
www.manaraa.com

Open Research Online
The Open University’s repository of research publications
and other research outputs

Masters-level software engineering education and the
enriched student context
Conference or Workshop Item
How to cite:

Hall, Jon G. and Rapanotti, Lucia (2015). Masters-level software engineering education and the enriched student
context. In: Proceedings of the 37th International Conference on Software Engineering: Volume 2, IEEE Press, pp.
311–314.

For guidance on citations see FAQs.

c© 2015 The Authors

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82979769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html


www.manaraa.com

Masters-level Software Engineering education and
the enriched student context

Jon G. Hall∗, Lucia Rapanotti∗
∗Department of Computing and Communications

The Open University, Milton Keynes, MK7 6AA, UK
Email: Jon.Hall@open.ac.uk; Lucia.Rapanotti@open.ac.uk

Abstract—Currently, adult higher education software engineer-
ing pedagogy isolates the student in a controlled environment
during delivery, with application of their learning temporally
distant from their professional practice. Delivering software
engineering teaching that is immediately relevant to professional
practice remains an open challenge. In this paper, we discuss a
new pedagogical model which addresses this problem by embed-
ding the validation of the student’s learning within their rich
professional context. We discuss our experience of applying the
model to the design and delivery of a new post-graduate software
development module, a core component in our new software
engineering Masters qualification at the Open University, UK,
a market leader in adult higher education at a distance.

I. INTRODUCTION

A major challenge of software engineering education is
marrying theory and practice, so that the learner develops
both a deep understanding of the academic discipline and
the skills to solve real-world software engineering problems,
in all their facets and complexity. In the last decade, value
has been found in pedagogical approaches which try and
meet this challenge by presenting learners with real-world
open-ended situations, rather than toy examples and fictitious
software problems: learning through tackling real-world open-
ended problems narrows the gap between what students do as
part of their study and what they encounter when working
in the industry and, as such, is a welcome advancement in
the way our discipline is taught. This is, for instance, the
case in problem-based learning, in which groups of learners
presented with real-world open-ended situations learn through
a learner-centered process of identifying problems, conducting
the necessary research and proposing appropriate solutions. In
this approach, the academic takes the role of a facilitator, while
students take the initiative and greater responsibility for their
learning. Applications of problem-based learning to software
engineering education are increasing, with examples reported
in the literature both for traditional class-based face-to-face
education [1], [2], and for distance education mediated by
online communication [3].

Yet an element of artificiality remains: the exercise only
simulates the real-world situation in the confines of the class-
room (physical or virtual), and some have questioned the
extent to which this actually prepares engineering students
for real-world practice [4], [5]. Other software engineering
courses add value through work placement instead, often
coupled to capstone projects [6]. Studies on the effectiveness

of this approach are lacking, but anecdotal evidence seems to
indicate that there remain difficulties linked to the degree of
alignment between work experience and what is taught in the
classroom, the availability of suitable hosting organisations,
and the variability in the quality of the work experience, in
particular in relation to the nature of the work students are
actually allowed to participate in.

In this paper we discuss a pedagogical model, developed at
the UK’s Open University (OU), which removes the temporal
distance from academic instruction to real-world experience by
blending the learner’s study and their rich real-world context.
Initially aimed at our part-time research students [7], we have
developed and refined the model over the past decade for
MPhil and PhD students. First applied in 2013 to the post-
graduate-level teaching of Information Security, we report
on its application to the design of a post-graduate software
engineering module, offered for the first time in May 2014.
This paper focuses on this latter application and reports both
on the pedagogical model, its impact on the module design and
the outcome of an initial partial evaluation we have conducted.
The initial data are encouraging: students embrace the new
model, deriving value from it both for themselves and for their
organisation.

II. BACKGROUND

A. The university and programme of study

The UK Open University (OU) is a world leader in part-
time adult higher education at a distance. Currently, over 73%
of our 200,000 students work full or part-time during their
studies, with higher percentages for students enrolled on our
post-graduate programme in Computing and ICT. Specifically,
of the 100 students who started our module in May 2014, 89%
declared to be in full-time employment and 5% in part-time
work.

While we have taught aspects of software engineering in
modules both at under- and post-graduate levels for over
a decade, a separate Masters level qualification in software
engineering was introduced only in May 2014. At its core
are two modules that span the body of knowledge [8]; the
first (the subject of this paper) focuses on a range of software
engineering theories, principles and techniques across the life
cycle, with particular emphasis on for problem definition,
analysis, design, implementation and testing.



www.manaraa.com

B. The OU distance education model

OU students conduct their part-time study entirely at a
distance. They are assigned to small tutor groups (up to
17 students at post-graduate level) with all interaction with
tutors and peers via communications technology. Study is
enabled by bespoke pedagogical materials delivered to each
student, driven by a shared study calendar and validated
at many assessment points. Increasingly, a Virtual Learning
Environment (VLE) provides the single point of access to a
module’s resources, services and activities; this includes the
module in question.

C. Student body and entry skills

The ‘openness’ of the OU means that most of our courses
have no formal prerequisites; we give credit to the practical
and professional skills that a student may have. Our new
software engineering qualification attracts students at many
levels of software development knowledge, both formal and
practical, a situation compounded both by the ‘open entry’
nature of the IT profession and the spread of technologies
used in the market place. Many practicing professionals are
self-taught, have retrained from other professions, or are highly
specialised, with developed skills and knowledge gaps that are
highly dependent on their journey into IT.

Our students use our post-graduate offering to gain aca-
demic recognition for their practical skills, to develop new
skills and to fill knowledge gaps that prevent their professional
progression. Most students have work and family responsibili-
ties and want flexible, relevant education which delivers value
both to them and to the organisations they work for. Indeed
some organisations sponsor their employees’ studies.

D. Learning outcomes and assessment

In contributing to a post-graduate qualification, the module
delivers a wide range of learning outcomes organised around:

Knowledge and understanding: including a wide range
of software engineering theories, principles, techniques, prac-
tices, standards and systems, and their application personally
and in business;

Analysis and Synthesis: including the ability to integrate
diverse software engineering knowledge, techniques, tools
and practices into a coherent whole, making appropriate
abstractions and dealing systematically and creatively with
complexity.

Transferrable skills: such as communicating effectively
with technical and non-technical audiences; argumentation;
critically reflection on and evaluating of their own work and
the work of others.

Professional and research skills: including the consid-
eration of risks, legal issues, cultural and ethical factors and
business needs; being able to identify needs, articulate goals,
locate and employ resources and follow action plans in support
of independent learning and professional development.

The module uses three types of assessment to track stu-
dent progress towards these learning outcomes: formative
assessment, where students make critical choices which may

affect their study success; summative continuous assessment,
for tracking student progress; and summative end of module
assessment, which focuses primarily on research and other
professional skills.

III. PEDAGOGICAL DESIGN: BLENDING THEORY AND
PRACTICE

A. Theoretical model
Quine, one of the most influential philosophers of the 20th

century, observed [9]:
Total science, mathematical and natural and human,

is [...] underdetermined by experience. The edge of the
system must be kept squared with experience; the rest [...]
has as its objective the simplicity of the laws.

We have noted elsewhere that Quine’s observation suggests
that generative research in disciplines that span both theory
and practice can fruitfully be conducted within a part-time
student’s rich professional context and we have developed a
research supervision model that does so [7].

Quine’s observation does not, however, say how to teach
theory within a practical discipline. Issues include: are all parts
of the theory relevant? If not, which are relevant and in which
order should they be taught? How should theory be assessed
from its practical application? What value is delivered if the
student’s rich context is used?

Much of software engineering has developed in practice, and
only epistemologically post-rationalised. As such, its theories
exhibit many of the issues mentioned above. Our thesis is that
there is value added for both the practitioner/student and their
organisation in allowing them to bring their rich professional
context into a supportive taught software engineering module,
with teaching mechanisms based on the experience of the
application of theory in satisfying the student’s needs within
that rich context. This value arises from, in Quine’s words,
‘[keeping] the edge of the [theory] squared with experience’:
specifically, through the application of their learning to an
organisational problem, students deliver into their rich profes-
sional context valuable developmental artefacts ranging from a
detailed problem understanding through to candidate solutions.

B. Module design
In traditional learning, the educator is wholly in control of

the detailed teaching agenda, i.e., the sequencing of teaching
must respect only the theoretical relationships between its
elements. In problem-based learning, constraints are added to
ensure that specific problems are treated at specific times. Our
problem-oriented model adds further constraints, in that the
educator must organise the teaching to deliver fit-for-purpose
conceptual tools before the student needs them, so as to enable
the development of understanding of, and ability to, solve real-
world problems in a wide range of student contexts.

Whereas it is not at all obvious how these additional con-
straints can be satisfied in the general educational setting, we
observe that, in process-based disciplines1, the processes that

1Which includes most of engineering, hence software engineering and
information security, another module taught through our problem-oriented
approach.



www.manaraa.com

the student will use to understand and solve their problems are
a valuable organising concept. On the module in question, for
instance, in Block 1 students learn principles and techniques of
early software lifecycle, from requirements and domain analy-
sis to software specification, engaging practically through, for
instance, the capture and validation of requirements within
their professional context, and UML modelling with activity
and class diagrams; in Block 2, the focus changes to soft-
ware design, construction and testing, engaging with design
practices, including the application of design principles and
patterns, UML modelling with interaction and state diagrams,
and software construction and testing in Java; finally in Block
3, they further develop skills acquired in the previous blocks to
revisit their software solutions based on software architectures
and frameworks, engaging in design and Java development
which make use of standard software components, services
and protocols.

C. Validation of learning

Disciplines with a process basis thrive on critical reflective
practice. Our observation is that the teaching of process can
thus form an effective basis for validation. For the software
engineering module, for instance, theories, principles and
techniques are taught for application by a student within their
rich real-world context. The student in then required to reflect
critically on their experience and to build a commentary on the
extent to which the applied theories, principles and techniques
have been fruitful, appropriate, deficient, over-complex, or just
plain wrong, therein.

This theory-supported process application within the stu-
dent’s rich context, followed by guided critical reflection, is
the main vehicle for assessment and validation of learning. In
addition, formative assessment takes place early in their study
to arrive at an appropriate choice of development problem
and organisational context, this choice being a key success
factor. They are expected to make steady progress with their
chosen development throughout their study, assessed at the
end of each block by their tutor, who also prepares feedback.
Alongside their submitted software development artefacts,
which demonstrate to which extent they have mastered specific
approaches and techniques, they must also provide the written
commentary we have just discussed. The guided reflection
also includes the rationale for their choices in the process
application within their context, and lessons learnt, and a
critical reflection on the teaching against real-world practice.

How does the rich context model affect the tutor’s work?
Tutors — experienced software professionals — are chosen for
their ability to deal with the variance in the student’s context.
Nevertheless, a generic marking scheme provides consistent
marking across the student cohort, despite the diversity of
development work to assess. This marries qualitative mark-
ing criteria related to the module’s learning outcomes with
quantitative measures which allow the tutor to assign a final
grade, one of fail, pass, merit or distinction.

D. Additional value

Value may accrue for the organisation, too, under our model;
in addressing an organisational problem, the student delivers
solution artefacts, such as problem understanding, stakeholder
requirements, even candidate software solutions. There is also
additional value for the student whose profile can be raised
within the organisation.

IV. EARLY EVALUATION

The module was presented for the first time in May 2014.
One hundred students started the module, organised in six
separate tutor groups. The retention rate was 84%, compared
to the previous 5-year programme mean of 76.7%. Students’
summative continuous assessment had mean 74% (s.d. 13.5%)
and end of module assessment had mean 62.8% (s.d. 19.14%).

Each tutor had over 10 years experience of supporting OU
students; for two tutors, however, this was their first expe-
rience at post-graduate level. All were experienced software
professionals.

With one hundred students, the spread of organisations
across sectors and the variety of development projects was
remarkable: from large companies to SMEs; from sole traders
to local authorities; from large financial institutions to cleaning
companies; from a system to process prices and quantities of
mutual funds in a financial institution, to an online foreign
language learning system. As well as confirming the richness
of our students’ context, these data also provide detailed,
valuable insights into our students’ professional background,
something which is not routinely accessible to an educator.
With data available every presentation, it will be a rich source
of information as to how the profession changes over time.

Our initial analysis of a random sample of continuous
assessment scripts (n = 40, N = 300) has provided some
insight as to the value delivered to the student, in terms of
their professional development. Many students acknowledged
the utility of what we teach, even starting from a skeptical
position. Comments include:

On first glance the approach to building the require-
ments document, use case, activity diagrams, class dia-
grams and [...] operational specification appear to be a bit
tedious for the size of [my] problem [...] However it soon
became apparent how useful these tools are [...] when
interacting with the stakeholders. I suspect the interactions
with stakeholders wouldn’t have been as effective without
the models.

and
[...] the most useful artefacts in terms of the analysis

process were the textual descriptions of use cases and the
glossary [as they] provide a means of sharing a precise
understanding of the problem domain with stakeholders.

and
While at first I was very sceptical of writing unit tests

for relatively simple operations, I’ve found it very useful
and I’ve noticed that it has enabled me track flaws in the
design.

However, it is also clear that what we, as academics, see
as good software engineering does not necessarily square with



www.manaraa.com

what is feasible or perceived useful in practice. For instance,
one student remarked:

I am rather skeptical about [collaboration diagrams].
In a situation where a new application is designed from
scratch, I can see this being used. In practice a developer
inherits an undocumented thrown-together application on
which she has to build a new feature before the end of the
week. Taken together with the widespread use of Agile, I
can’t really see a developer following all these steps to
arrive at an acceptable solution, although he should.

While what we teach seems to align quite closely to the
experience of most of our students, it does not cover practices
in specific industries, notably embedded software engineering:

the technique of unit testing is something that I have
not come across in my career as an embedded software
engineer so far. While this technique is not designed to
replace formal verification and could potentially increase
the development time, I personally enjoyed the psycholog-
ical benefit of seeing the green tick when a unit test had
passed.

One student went as far to perform his own small evaluation
of some UML techniques and wrote

I had the occasion to try out UML diagrams on two
non-technical colleagues. The response varied according
to which type of diagram was discussed: Activity diagrams
were understood intuitively. Use case diagrams proved less
intuitive, as they were understood as sequences to be read
top-to-bottom. [...] Class diagrams – to clarify authoriza-
tion [sic] concepts (user, role, session, permission) – did
not prove useful.

Beside the continuous assessment scripts, we have also
received some early feedback on the students’ experience on
the module as a whole via the module forum. The comments
so far are very positive. One stated “it was definitely useful
for my career and my work”. Another student, an experienced
software developer, noted that the module

reinforced knowledge that I had already gained
through work. In some cases it helped me to identify sloppy
practices that had crept into my approaches over the years
[and] inspired me to investigate further some areas that I
had never made the time to investigate before.

Room for improvements were, of course, also noted. For
instance, “teamwork would be good to add in somehow” or

“it was useful to get a basic understanding of the [Java
EE] architecture, but for the time of the course, it was
impossible to give a good enough detailed knowledge to
really gain much from the practical exercises”

Finally, from the tutor’s perspective, initial concerns as to
the potential high workload related to the new practice-based
assessment quickly disappeared with the tutors acknowledging
that the marking scheme provided was very efficient and that
assessing original and varied project work was more enjoyable
and rewarding than that of case studies.

V. CONCLUSION

The paper has discussed a pedagogical approach which
attempts to marry academic teaching and professional prac-
tice in the context of a new distance learning post-graduate
level software engineering module. While acknowledging the
limitations and possible bias of our initial evaluation, there are

some encouraging signs that the model is effective: students
appear to have taken our teaching into their rich context and
professional practice and found value both in terms of their
professional development and in widening their knowledge
and understanding of the discipline.

From an academic perspective, the model required a rethink
of the way we design our teaching and its delivery in order
to be timely, relevant and applicable across a wide range of
student selected software development problems. The model
also required the careful design of a standardised assessment
strategy, to be both scalable and able to deliver post-graduate
level validation. The situated problem-oriented summative
continuous assessment provides a valuable feedback loop
to help us evaluate and calibrate our teaching of software
engineering theories and techniques against the stringent re-
quirements of current professional practice.

The new model required a leap of faith: we had to combat
a fear of losing control of a key component of the module
in allowing the students to bring their choice of development
problem into their learning rather than giving them standard
problems to solve. Feedback from this first module presenta-
tion indicates that this aspect of the module has been valuable
for students, tutors and educator.

Future work is being commissioned that will analyse more
systematically the full set of data from the first presentation
of the module to allow us to be more conclusive as to
the qualities and limitations of our approach. We will also
compare outcomes from this module with those on the related
Information Security module which makes use of the same
pedagogical approach.

ACKNOWLEDGMENT

To our students, for making us better teachers.

REFERENCES

[1] I. Richardson, L. Reid, S. B. Seidman, B. Pattinson, and Y. Delaney,
“Educating software engineers of the future: Software quality research
through problem-based learning,” in Software Engineering Education and
Training (CSEE&T), 2011 24th IEEE-CS Conference on. IEEE, 2011,
pp. 91–100.

[2] J. D. Delaney, G. Mitchell, and S. Delaney, “Software engineering meets
problem-based learning,” The Engineers Journal, vol. 57, no. 6, 2003.

[3] L. Brodie, H. Zhou, and A. Gibbons, “Steps in developing an advanced
software engineering course using problem based learning,” engineering
education, vol. 3, no. 1, pp. 2–12, 2008.

[4] J. Perrenet, P. Bouhuijs, and J. Smits, “The suitability of problem-based
learning for engineering education: theory and practice,” Teaching in
higher education, vol. 5, no. 3, pp. 345–358, 2000.

[5] J. E. Mills, D. F. Treagust et al., “Engineering education—is problem-
based or project-based learning the answer?” Australasian Journal of
Engineering Education, vol. 3, pp. 2–16, 2003.

[6] L. Johns-Boast and S. Flint, “Simulating industry: An innovative software
engineering capstone design course,” in Frontiers in Education Confer-
ence, 2013 IEEE. IEEE, 2013, pp. 1782–1788.

[7] J. G. Hall and L. Rapanotti, “Enterprising research skills: academia’s
changing role,” International Journal of Learning and Intellectual Capi-
tal, vol. 10, no. 1, pp. 1–17, 2013.

[8] P. Bourque and R. Failey, Eds., Guide to the Software Engineering Body
of Knowledge, Version 3.0, 2014.

[9] W. V. O. Quine, “Two dogmas of empiricism,” in From a Logical Point
of View, 2nd ed. Harvard University Press, 1961, (Originally published
in The Philosophical Review 60 (1951): 20-43) Text available from
http://www.ditext.com/quine/quine.html.


